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Research Article

Mathematics achievement during schooling is a strong 
predictor of labor-market earnings (Murnane, Willett, & 
Levy, 1995; Ritchie & Bates, 2013). In addition, researchers 
consistently find that children’s early mathematics achieve-
ment predicts their later mathematics achievement (e.g., 
Duncan et al., 2007). These findings have led many peo-
ple to conclude that early intervention is likely to result in 
significant long-term gains in children’s mathematics 
achievement and subsequent life outcomes. Indeed, the 
U.S. government spends at least as much on early-child-
hood programs as on educating disadvantaged students 
in kindergarten through Grade 12 (Whitehurst, 2014).

The efficiency of these early intervention programs 
depends on whether raising children’s school-entry 
mathematical skills will better enable them to acquire 
more difficult mathematical skills later on. Consistent 
with this possibility are findings that in children’s math-
ematical development, later knowledge often builds on 

earlier knowledge. For example, to solve a fraction addi-
tion problem, children must be able to accurately multi-
ply and add whole numbers; children who make frequent 
errors in whole-number arithmetic make frequent errors 
on fraction arithmetic problems (Siegler & Pyke, 2013). 
Transfer of learning likely also contributes to longitudinal 
stability in children’s mathematics achievement. For 
example, knowledge of mathematical concepts facilitates 
the learning of mathematical procedures, and vice versa 
(Rittle-Johnson & Siegler, 1998; Schneider, Rittle-Johnson, 
& Star, 2011).

Indeed, several studies have found that children’s early 
mathematics knowledge is a robust predictor of their later 
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Abstract
Substantial longitudinal relations between children’s early mathematics achievement and their much later mathematics 
achievement are firmly established. These findings are seemingly at odds with studies showing that early educational 
interventions have diminishing effects on children’s mathematics achievement across time. We hypothesized that 
individual differences in children’s later mathematical knowledge are more an indicator of stable, underlying characteristics 
related to mathematics learning throughout development than of direct effects of early mathematical competency on 
later mathematical competency. We tested this hypothesis in two longitudinal data sets, by simultaneously modeling 
effects of latent traits (stable characteristics that influence learning across time) and states (e.g., prior knowledge) 
on children’s mathematics achievement over time. Latent trait effects on children’s mathematical development were 
substantially larger than state effects. Approximately 60% of the variance in trait mathematics achievement was 
accounted for by commonly used control variables, such as working memory, but residual trait effects remained larger 
than state effects. Implications for research and practice are discussed.
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mathematics achievement (Aunola, Leskinen, Lerkkanen, 
& Nurmi, 2004; Bailey, Siegler, & Geary, 2014; Duncan 
et al., 2007; Geary, Hoard, Nugent, & Bailey, 2013; Jordan, 
Kaplan, Ramineni, & Locuniak, 2009; Siegler et al., 2012; 
Watts, Duncan, Siegler, & Davis-Kean, in press). This 
longitudinal stability holds after adjusting for domain-
general cognitive abilities, such as IQ and working mem-
ory, reading and language skills, and socioeconomic 
status (SES). Further, the amount of time between mea-
surements of early and later mathematics achievement is 
not clearly related to the strength of the association 
between them (Watts et al., in press); in fact, some evi-
dence suggests that the strength of this relation increases 
over time (Claessens & Engel, 2013).

To the extent that this observed longitudinal stability 
in children’s mathematics achievement predicts the likely 
effects of interventions, interventions that lead to short-
term gains in children’s mathematics achievement should 
show effects of at least the same magnitude persisting 
into the long term. However, studies of the effectiveness 
of early educational interventions suggest otherwise. 
Research on both general educational interventions (e.g., 
Campbell & Ramey, 1994; Puma, Bell, Cook, & Heid, 
2010) and mathematics-specific interventions (Clements, 
Sarama, Spitler, Lange, & Wolfe, 2011; Clements, Sarama, 
Wolfe, & Spitler, 2013) has revealed that short-term test-
score gains have diminishing effects on children’s math-
ematics achievement across time. A comprehensive 
review of early-childhood education programs showed 
substantially decreasing effects with increasing time since 
the intervention (Leak et al., 2010). Therefore, despite a 
substantial literature indicating that individual differences 
in mathematics achievement are stable from school entry 
to school completion, early interventions targeting chil-
dren’s mathematics achievement show diminishing 
returns and do not consistently boost their much later 
mathematics outcomes. What can account for this appar-
ent discrepancy?

We hypothesize that individual differences in chil-
dren’s later mathematical knowledge are more likely an 
indicator of unmeasured, stable characteristics related to 
mathematics learning throughout development (e.g., 
domain-general cognitive abilities, motivation) than of a 
direct effect of their early mathematical competency on 
their later mathematical competency. This hypothesis is 
supported by two findings from studies of children’s 
mathematical development.

First, previous research has found a consistent relation 
between early and later measurements of mathematics 
achievement, regardless of the amount of time between 
measurements. If mathematical development is a purely 
autoregressive process, in which earlier knowledge alone 
directly influences later learning (Fig. 1a), the correlation 
between measures of mathematics achievement at 

different time points should decay exponentially as the 
time between the measures increases and the causal con-
nection between these time points becomes increasingly 
indirect. If, at the other extreme, individual differences 
arise independently of previous mathematical knowledge 
(Fig. 1b), the correlation between mathematics achieve-
ment in one year and mathematics achievement in 
another year should be completely independent of the 
time gap between those years. The truth probably lies 
somewhere in the middle, because it is likely that both 
traits (stable characteristics that contribute to achieve-
ment) and previous knowledge contribute to children’s 
mathematical development. However, the findings that 
the temporal distance between measurements of mathe-
matics achievement is not clearly related to the strength 
of the association between those measurements are more 
consistent with the latter pattern.

Second, studies have also found relations between 
mathematics achievement and a large number of traits, 
which are unlikely to be fully controlled in longitudinal 
studies of mathematics achievement. A skeptic might 
argue that stable underlying traits are not likely to account 
for strong longitudinal relations in children’s mathematics 
achievement because children’s mathematics achieve-
ment shows rank-order longitudinal stability even after 
adjustments are made for IQ, working memory, and SES. 
Indeed, it is uncontroversial that these traits affect chil-
dren’s learning. For example, a large prospective study 
found that intelligence at age 11 accounted for 59% of the 
variance in mathematics achievement at age 16 (Deary, 
Strand, Smith, & Fernandes, 2007). However, the large set 
of traits that have been implicated in mathematics learn-
ing includes attention (Zentall, 2007), processing speed 
(Mazzocco & Grimm, 2013), several subfacets of working 
memory (Szücs, Devine, Soltesz, Nobes, & Gabriel, 2014), 
beliefs and expectancies (Meece, Wigfield, & Eccles, 
1990), and motivation (Murayama, Pekrun, Lichtenfeld, & 
vom Hofe, 2013). The length of this list is problematic: 
No longitudinal study of children’s mathematics achieve-
ment that we are aware of has assessed all of these traits, 
and therefore every such study has been confounded by 
unmeasured traits that may affect children’s mathematics 
achievement across development. Consequently, reported 
findings may overestimate the potential effects of early 
interventions on much later mathematics achievement. 
The current study was designed to estimate the relative 
influences of stable traits and previous state knowledge 
(i.e., autoregressive effects) on children’s mathematical 
development.

Method

We addressed the problem of confounds by using the 
state-trait modeling approach (Steyer, 1987) to analyze 
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two longitudinal data sets. That is, we partitioned the 
variance in mathematics achievement throughout devel-
opment into trait effects (i.e., effects of factors that influ-
ence an individual’s mathematics achievement similarly 
across development) and state effects (i.e., effects of indi-
vidual differences in mathematics achievement on subse-
quent mathematics achievement). Thus, mathematics 
achievement at a given time point was modeled as influ-
enced by (a) a traitlike factor, (b) mathematics achieve-
ment at the immediately preceding measurement 
occasion (the state effect), and (c) unique sources of 
variation (e.g., measurement error; Jackson, Sher, & 
Wood, 2000). In our models, trait mathematics achieve-
ment was a set of factors that had a stable influence on 
mathematics achievement throughout development. State 
effects, in contrast, represented occasion-specific effects 
on children’s mathematics achievement (e.g., the influ-
ences of specific teachers), effects of specific types of 
mathematics knowledge on the development of other 
knowledge, and a number of other factors.

We hypothesized that latent trait effects would contrib-
ute significantly to the longitudinal stability in children’s 
mathematics achievement. We also hypothesized that 
most of the trait variance would be accounted for by 

domain-general cognitive abilities, reading achievement, 
and SES. However, because these variables do not 
account for all traits contributing to children’s mathemat-
ics achievement, we also hypothesized that latent trait 
effects would continue to contribute to estimates of lon-
gitudinal relations between early and later mathematics 
knowledge even after we adjusted for these other 
variables.

Short-term data set

The participants in this data set were the 292 children 
who completed the first-grade assessments in a longitu-
dinal study of mathematical development (Geary, 2010; 
Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007). 
Appendix A of the Supplemental Material available online 
provides additional information on this sample, including 
details about their SES.

Mathematics achievement.  Participants’ mathematics 
achievement in first, second, third, and fourth grades was 
assessed using the number of correct answers on the 
Numerical Operations subtest of the Wechsler Individual 
Achievement Test II–Abbreviated (Wechsler, 2001). In this 

Fig. 1.  Illustration of (a) state-only and (b) trait-only models of mathematics achievement and the correlation matrices 
they predict. Each model describes the relationships among latent trait mathematics achievement and measures of state 
mathematics achievement (S) at four time points (1–4). Although both models predict correlations of x between mathemat-
ics achievement at consecutive time points, they make differing predictions about the correlations between mathematics 
achievement at nonconsecutive time points. According to the purely autoregressive, state model, these correlations will 
decay exponentially with increasing distance in time between measurements, whereas according to the pure trait model, 
these correlations will be stable regardless of the distance in time between measurements.

S3 x x 1

S4 x x x 1

S1 S2 S3 S4

S1 1

S2 x 1

S1 S2 S3 S4
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age range, the items involve number discrimination, rote 
counting, number production, basic addition and sub-
traction, and multidigit addition and subtraction; there 
are also some multiplication and division problems to be 
solved with paper and pencil. This test has been shown 
to be reliable in all four of these age groups (split-half 
reliabilities, calculated using the Spearman-Brown for-
mula, were .85, .81, .91, and .88 for ages 6, 7, 8, and 9, 
respectively; Wechsler, 2001).

Reading achievement.  First graders’ reading achieve-
ment was assessed using the number of correct answers 
on the Word Reading subtest of the Wechsler Individual 
Achievement Test II–Abbreviated (Wechsler, 2001). This 
subtest requires reading single words aloud.

Working memory.  Central executive functioning in first 
grade was assessed by the number of correct answers on 
the Listening Recall, Counting Recall, and Backward Digit 
Recall subtests of the Working Memory Test Battery for 
Children (Pickering & Gathercole, 2001). This measure 
was reliable in the current sample (Cronbach’s α = .77).

Intelligence.  The Vocabulary and Matrix Reasoning 
subtests of the Wechsler Abbreviated Scale of Intelligence 
were administered and used to estimate Full Scale IQ in 
first grade (Wechsler, 1999).

SES.  Data on parental education and household income 
were obtained through a survey completed by the par-
ticipants’ parents.

Long-term data set

Data for our long-term models of mathematics achieve-
ment were drawn from the National Institute of Child 
Health and Human Development (NICHD) Study of Early 
Childcare and Youth Development (SECCYD). Participants 
were recruited at birth from 10 geographically diverse 
sites in both urban and rural areas and were followed 
through adolescence. We employed a subsample (n = 
1,124) of participants who had at least one valid mathe-
matics achievement score. Sampling procedures for the 
SECCYD study have been well documented (see Duncan 
& Gibson, 2000; NICHD Early Child Care Research 
Network, 2002). We present descriptive information 
about the participants in Appendix B of the Supplemental 
Material.

Mathematics achievement.  The Woodcock-Johnson–
Revised (WJ-R) Applied Problems subtest (Woodcock, 
McGrew, & Mather, 2001) was administered in Grades 1, 
3, and 5 and at age 15. The Applied Problems subtest is 
a widely used measure of mathematics achievement (e.g., 

Siegler et al., 2012), and it is used to assess understanding 
of a broad range of mathematical procedures and con-
cepts. In the current study, we used the standard score, 
which was age-normed to national standards (M = 100, 
SD = 15). This test was reliable in all four age groups of 
this sample (Cronbach’s α = .83, .81, .82, and .87 for 
Grades 1, 3, and 5 and age 15, respectively).

Reading achievement.  We used first-grade scores on 
the WJ-R Letter Word Identification subtest to measure 
early reading achievement. As with mathematics achieve-
ment, we used the standard score, which reflects stu-
dents’ ability to correctly identify letters and simple 
words.

Working memory.  The WJ-R Memory for Sentences 
subtest, which requires repeating sentences and phrases 
presented by a tape player, is a commonly used measure 
of working memory (e.g., Duncan et al., 2007). We used 
nationally normed standardized scores on this subtest for 
our measure of working memory.

Executive functioning.  During first grade, children 
were administered the Tower of Hanoi puzzle, which 
assesses problem-solving and planning abilities. We used 
the efficacy score, which is derived from the number of 
trials the participant takes to complete each task (see 
Borys, Spita, & Dorans, 1982).

SES.  Family income was measured via parental report 
six times from when the children were 1 month old to 
when they were in first grade. This information was 
transformed to an income-to-needs ratio at each time 
point, and we calculated the average ratio for each child. 
Mothers reported their level of completed education dur-
ing interviews when the children were 1 month old.

Analyses

For each data set, we estimated a state-trait model with a 
latent trait and four state factors; each of the state factors 
was related to the corresponding mathematics measure 
via a path set to the square root of the reliability for that 
measure (to account for measurement error). We also 
estimated for each data set a model in which we regressed 
the latent trait on domain-general cognitive abilities 
(working memory, IQ or executive functioning), reading 
achievement (a measure of reading ability and proxy for 
general academic ability), and SES (household income, 
parental education). Thus, we estimated a total of four 
models.

We constrained the trait variance to be 1 and the paths 
from latent trait mathematics achievement to state math-
ematics achievement at the second, third, and fourth time 
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points to be equivalent within each model. We freely 
estimated the path from latent trait mathematics achieve-
ment to state mathematics achievement at the first time 
point because it was the only time point that did not 
control for previous mathematics achievement. This prac-
tice is common in latent variable analyses (Little, Slegers, 
& Card, 2006). In the long-term data set, the latter con-
straint led to inflated standard errors for some of the 
paths, so we constrained the first, third, and fourth time 
points to be equivalent in each model for this data set. 
For the long-term data set, all latent variables and con-
trols were regressed on site before being entered in the 
models. This practice is common in analyses using these 
data (Duncan et al., 2007; Watts et al., in press), as site 
characteristics have been shown to vary widely in this 
sample.

Results

Table 1 presents the correlation matrices for the short-
term and long-term data sets. The correlations in both 
data sets approximate a pattern predicted by a trait model 
more closely than a pattern predicted by a purely autore-
gressive, state model. The average correlations for math-
ematics achievement measured at consecutive time points 
were .67 and .74 in the short-term and long-term data 
sets, respectively. Given these observations, an autore-
gressive process would predict estimates near .72 (.49) 
and .73 (.34) for correlations between mathematics 
achievement two and three time points apart, respec-
tively. In contrast, a trait model would predict correla-
tions close to .7 regardless of the lag between 
measurements. In the short-term data set, the correlations 
between mathematics achievement two time points apart 
averaged .58, and the correlation between Time 1 and 
Time 4 mathematics achievement was .51. In the long-
term data set, the correlations between mathematics 

achievement two time points apart averaged .70, and the 
correlation between Time 1 and Time 4 mathematics 
achievement was .66, despite a lag of approximately 8 
years between these time points. These correlations sug-
gest substantial trait effects in both cases, but also pro-
vide some evidence of state effects.

Figure 2 presents the state-trait models for the short- 
and long-term data sets before and after regressing the 
latent trait on domain-general abilities, reading achieve-
ment, and SES. We evaluated model fit using recommen-
dations from Kline (2005). Specifically, we considered fit 
to be good if the comparative fit index (CFI) was at least 
.90 and the root-mean-square error of approximation 
(RMSEA), which measures fit adjusting for sample size, 
was less than .08, and preferably less than .05.

State-trait models for the short-term 
data set

The state-trait model fit the short-term data well both 
before and after we regressed the latent trait on domain-
general abilities, reading achievement, and SES—before: 
χ2(1) = 0.65, p = .42, RMSEA = .00, CFI = 1.00; after: 
χ2(6) = 19.89, p = .23; RMSEA = .03; CFI = .995. Before 
adjustment for domain-general cognitive abilities, read-
ing achievement, and SES (see Fig. 2, first coefficient for 
each path), both state and trait effects were significant in 
all cases, but trait effects (range: .64–.74) were larger than 
state effects (range: .18–.26). For example, the proportion 
of variance in Time 2 mathematics achievement that was 
explained by direct trait effects was .55 (trait loading × 
trait variance × trait loading, or .74 × 1 × .74). In contrast, 
the proportion of variance in Time 2 mathematics 
achievement that was explained by Time 1 state mathe-
matics achievement (including the indirect effect of the 
latent trait via Time 1 state mathematics achievement) 
was .07 (state effect2, or .262).

Table 1.  Correlation Matrices for the Short-Term and Long-Term Data Sets

Variable 1 2 3 4 5 6 7 8 9

1. State math achievement: Time 1 .72 .72 .66 .53 .27 .58 .33 .36
2. State math achievement: Time 2 .61 .76 .67 .50 .26 .56 .28 .34
3. State math achievement: Time 3 .49 .69 .74 .51 .27 .52 .33 .39
4. State math achievement: Time 4 .51 .67 .72 .49 .22 .44 .32 .40
5. Working memory .41 .53 .58 .59 .19 .45 .30 .33
6. IQ/executive functioninga .36 .51 .46 .49 .44 .18 .16 .15
7. Reading achievement .44 .49 .55 .55 .55 .51 .23 .28
8. Household income .23 .30 .28 .33 .22 .37 .36 .55
9. Parental education .20 .29 .37 .39 .38 .37 .35 .58  

Note: Correlations in the short-term data set are below the diagonal; correlations in the long-term data set are above the diagonal. All correlations 
are significant, p < .03 (p < .001 for correlations in boldface).
aOur second measure of domain-general ability was IQ in the short-term data set and executive functioning in the long-term data set.

 at UNIV CALIFORNIA IRVINE on October 2, 2014pss.sagepub.comDownloaded from 

http://pss.sagepub.com/


6	 Bailey et al.

The ratio of the percentage of variance in Time 2 
mathematics achievement accounted for by direct trait 
versus state factors (55:7) was striking. However, it is 
uncontroversial that traits affect children’s mathematics 
achievement. Indeed, this is why researchers often adjust 
for some combination of domain-general cognitive abili-
ties, reading achievement, and SES in longitudinal studies 
of children’s mathematics achievement. Together, these 
variables accounted for 66% of the variance in trait math-
ematics achievement in the short-term data set. A more 
interesting question is whether trait effects vanished after 
adjustment for these variables? In the model adjusting for 
domain-general cognitive abilities, reading achievement, 

and SES (see Fig. 2, second coefficient for each path), .07 
of the variance in Time 2 mathematics achievement was 
again explained by Time 1 mathematics achievement (the 
state effect); the direct trait effect was reduced, but at .18 
(.72 × .34 × .72) was still more than twice the size of the 
state effect.

State-trait models for the long-term 
data set

The state-trait model fit the long-term data well both 
before and after we regressed the latent trait on domain-
general abilities, reading achievement, and SES—before: 

M1 M2 M4M3

Trait

S1

Working
Memory

IQ/Executive
Function

Reading 
Achievement

Household 
Income

Parental
Education

ST: .64***,.65***
LT: .85***,.90***

ST: .71***,.69*** 
LT: .83***,.86***

ST: .70***,.68***
LT: .85***,.89***

 ST: .74***,.72***
LT: .60***,.85***

 

ST: .26***,.26***
LT: .34***,.09

 ST: .18*,.20** 
LT: .16***,.09**

ST: .20**,.22** 
LT: .04,–.01

ST: —,.41***
LT: —,.30***

ST: —,.23***
LT: —,.14***

ST: —,.27***
LT: —,.40***

 ST: —,.06
LT: —,.07*

ST: —,.06
LT: —,.16***

Unique Trait Variance
ST: 1,.34 
LT: 1,.45

ST: .92,.92 
LT: .91,.91

ST: .90,.90 
LT: .90,.90

ST: .95,.95 
LT: .91,.91

ST: .94,.94 
LT: .93,.93

S2 S3 S4

Fig. 2.  State-trait models for the short-term data set (ST) and the long-term data set (LT). For each 
data set, the first coefficient is from the model before the latent trait was regressed on domain-general 
abilities (working memory in both ST and LT; IQ in ST and executive functioning in LT), reading 
achievement, and socioeconomic status (household income and parental education), and the second 
coefficient is from the model after the latent trait was regressed on these variables. All coefficients are 
standardized. S1, S2, S3, and S4 = state mathematics achievement at the first, second, third, and fourth 
time points, respectively; M1, M2, M3, and M4 = measured mathematics achievement at these time 
points. Asterisks indicate coefficients that are significant (*p < .05, **p < .01, ***p < .005). The numbers 
at the bottom of the figure are the square roots of test reliabilities of each test at each time point; these 
values were used to adjust the state values for measurement error. Correlations between domain-gen-
eral cognitive abilities, reading achievement, and SES are not shown, nor are the effects of site dummy 
variables on all manifest and latent variables in the long-term data set.
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χ2(1) = 4.48, p = .03, RMSEA = .056, CFI = .999; after: 
χ2(16) = 108.22, p < .001; RMSEA = .072, CFI = .975. As in 
the short-term data set, trait effects were substantially 
larger than state effects. The final state path was not sta-
tistically significant in either model for the long-term data 
set, but we note that the time between the third and 
fourth time points, 4 years, was the longest in either data 
set.

In the long-term data set, before the adjustments for 
domain-general abilities, reading achievement, and SES, 
the proportion of variance in Time 2 mathematics 
achievement that was explained by direct trait effects was 
.36 (.60 × 1 × .60), and the proportion of variance 
accounted for by state effects (including the indirect 
effect of the latent trait via Time 1 state mathematics 
achievement) was .12 (.34 × .34). Domain-general cogni-
tive abilities, reading achievement, and SES together 
accounted for 55% of the variance in trait mathematics 
achievement. As in the short-term data set, adjusting for 
these variables (see Fig. 2, second coefficient for each 
path) reduced the proportion of variance in Time 2 math-
ematics achievement that was directly accounted for by 
the latent trait (.85 × .45 × .85, or .33), but this was still 
substantially larger than the amount of variance accounted 
for by state Time 1 mathematics achievement (.09 × .09, 
or .01).

Discussion

Results were quite similar across the two data sets, and 
were consistent with our predictions. Latent trait effects 
accounted for most of the longitudinal stability in chil-
dren’s mathematics achievement and were largely 
explained by measured domain-general cognitive abili-
ties, reading achievement, and SES (and especially by 
working memory and reading achievement—see Fig. 2). 
However, as predicted, latent trait effects continued to be 
larger than state effects even after adjustment for these 
variables. This indicates that failing to consider other sta-
ble characteristics (e.g., motivation and external environ-
mental effects, such as school effects) could substantially 
bias estimates produced by multiple regression models.

This study unites two discrepant lines of research: a 
large body of work indicating high levels of longitudinal 
stability of individual differences in children’s mathemat-
ics achievement and studies showing diminishing effects 
of early mathematics interventions over time. The latter 
studies fail to adequately adjust for trait effects on math-
ematics achievement, and reported results consequently 
overestimate the likely effects of early interventions on 
much-later mathematics achievement outcomes. It is pos-
sible that trait mathematics achievement includes some 
early mathematical skills or skills, such as basic arithmetic 

skill, that contribute to performance on a wide range of 
mathematics tests, but this remains to be determined.

On the one hand, individual differences on some mea-
sures of basic arithmetic achievement (e.g., retrieval 
accuracy for simple arithmetic facts) tend to converge 
(Ackerman, 2007; but do not disappear, as we discuss in 
the next paragraph) and show weaker relations with rela-
tively stable traits (e.g., domain-general cognitive abili-
ties) as children progress in their mathematical 
development (Bailey, Littlefield, & Geary, 2012). These 
findings are inconsistent with the argument that trait 
mathematics achievement includes these basic mathe-
matics skills. Further, it is unlikely that any particular set 
of factual knowledge can account for much of the trait 
variance we observed in children’s mathematics achieve-
ment. This is because of the heterogeneity in the mathe-
matical knowledge underlying variance in mathematics 
achievement from Grade 1 (the first time point in the 
long-term data set) to age 15 (the fourth time point in the 
long-term data set). For example, the 95th percentile of 
mathematics achievement at the first-grade time point 
corresponded to a raw score of 32, whereas a raw score 
of 33 on the same test corresponded to the 5th percentile 
of mathematics achievement at age 15. Therefore, the 
sets of problems on which children vary most are prob-
ably almost completely distinct at these two times.

On the other hand, individual differences in some 
basic skills (e.g., speed and accuracy of fact retrieval) 
persist even into adulthood (e.g., Geary & Widaman, 
1992) and likely contribute to individual differences in 
performance in more complex mathematical domains. 
These observations are consistent with the argument that 
these basic skills may be included in the construct of trait 
mathematics achievement. However, a different pattern is 
found with general mathematics achievement, a more 
complex domain in which individual differences grow 
during development (Ackerman, 2007; Aunola et  al., 
2004; Geary et al., 2009) and remain substantially related 
to trait-level cognitive abilities (Table 1; Deary et  al., 
2007). The amount of observed variance in mathematics 
achievement accounted for by latent trait effects in our 
models is consistent with previous estimates of the effects 
of these cognitive abilities on mathematics achievement 
(Cowan & Powell, 2013; Deary et al., 2007), and the state-
trait model fit both data sets well despite the constraint 
that trait loadings were constrained to be equivalent for 
three of the four time points. Therefore, if trait mathemat-
ics achievement includes specific types of mathematical 
skills, individual differences in mathematical knowledge 
would have to affect mathematics achievement similarly 
throughout development. Whether this is the case, and if 
so, what basic mathematics skills have these effects 
remain to be determined.
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Implications for research

Findings from many longitudinal studies of children’s 
mathematics achievement can be reinterpreted in light of 
these findings. Latent trait effects are likely confounds in 
studies of longitudinal stability in children’s mathematics 
achievement and in studies of the numerical, mathemati-
cal, and domain-general skills that predict changes in 
children’s mathematics achievement over time. Even 
studies that control for previous mathematics achieve-
ment (i.e., using an autoregressor) do not fully control for 
the traits that consistently affect children’s mathematics 
achievement across development. However, interpreta-
tions of descriptive studies of the cognitive profiles of 
children with high and low mathematics achievement, or 
children at risk for low achievement, are not changed by 
the current study, and such studies remain useful for 
identifying children at risk for persistently low mathemat-
ics achievement.

The current study raises an important question: What 
traits account for the remaining variance in trait mathe-
matics achievement? If it is possible to account for a very 
high proportion of the variance in trait mathematics 
achievement with a set of control variables, future longi-
tudinal studies that include these variables can avoid 
confounds. Regardless, a simpler solution may be to 
include mathematics achievement data at enough time 
points to enable a state-trait analysis. The state-trait 
approach has a further advantage in that it can be used 
in currently existing longitudinal data sets to test hypoth-
eses previously tested using the more traditional multiple 
regression approach. In addition to replicating the cur-
rent findings, future research can address new questions 
raised by the state-trait framework, including whether 
early interventions affect state or trait mathematics 
achievement, whether state or trait mathematics achieve-
ment affects important life outcomes, and whether differ-
ent types of key mathematical knowledge are related to 
mathematics achievement at the state or trait level. A final 
option for testing the direct effects of early mathematics 
knowledge on later mathematics achievement is the ran-
domized controlled-trial design, which remains the gold 
standard for testing causal hypotheses.

Implications for practice

A practical implication of the current study is that early 
interventions that narrowly target skill acquisition for 
children with significant early mathematical deficits are 
likely insufficient to substantially alter their long-run 
achievement trajectories. That said, we believe these 
interventions are important and necessary. Several early 
interventions are known to quickly and effectively boost 
children’s early numerical knowledge (e.g., Siegler, 2009), 
and a more intensive early mathematics intervention has 

shown benefits remaining at impressive levels 3 years 
later (Clements et  al., 2011; Clements et  al., 2013). 
Moreover, the alternatives to early intervention are not 
clearly more desirable. The state-trait model predicts that 
later mathematics intervention will produce larger end-
of-schooling gains in mathematics achievement for every 
standard-deviation gain in mathematics achievement that 
is immediately produced by the intervention. However, 
raising later mathematics achievement by 1 standard 
deviation is likely much more difficult than boosting ear-
lier mathematics achievement by 1 standard deviation, as 
children are asked to master an increasingly large and 
complex set of knowledge as they get older.

Further, it is unclear at this point whether interven-
tions also affect latent trait mathematics achievement. If 
so, the state-trait approach indicates the need to simulta-
neously target competencies that contribute to trait math-
ematics achievement above and beyond IQ, working 
memory, and the SES measures used here. For example, 
if the variance in trait mathematics achievement is related 
in part to motivation, perhaps promoting early numerical 
competence and motivation would increase trait mathe-
matics achievement and later mathematical achievement 
on top of boosting state mathematics achievement. 
Consistent with this possibility is the finding that a 
successful early intervention with long-term effects on 
mathematics achievement also increased students’ moti-
vation (Schweinhart et  al., 2005). Interventions that 
change beliefs about the importance of effort for mathe-
matics learning may also contribute to trait effects and 
boost long-term mathematics achievement (Blackwell, 
Trzesniewski, & Dweck, 2007). In other words, our results 
point to the need for multifaceted interventions that 
improve facets of trait mathematics achievement that can 
be most efficiently manipulated (perhaps motivational 
factors and beliefs), as well as successive interventions 
that target specific deficits in content knowledge through-
out children’s mathematical development. Finally, the 
current study addressed only individual differences in 
children’s mathematical development. We emphasize that 
it is important to raise the mean level mathematics per-
formance throughout development for all children.
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