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Abstract

Substantial longitudinal relations between children’s early mathematics achievement and their much later mathematics
achievement are firmly established. These findings are seemingly at odds with studies showing that early educational
interventions have diminishing effects on children’s mathematics achievement across time. We hypothesized that
individual differences in children’s later mathematical knowledge are more an indicator of stable, underlying characteristics
related to mathematics learning throughout development than of direct effects of early mathematical competency on
later mathematical competency. We tested this hypothesis in two longitudinal data sets, by simultaneously modeling
effects of latent traits (stable characteristics that influence learning across time) and states (e.g., prior knowledge)
on children’s mathematics achievement over time. Latent trait effects on children’s mathematical development were
substantially larger than state effects. Approximately 60% of the variance in trait mathematics achievement was
accounted for by commonly used control variables, such as working memory, but residual trait effects remained larger

than state effects. Implications for research and practice are discussed.
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Mathematics achievement during schooling is a strong
predictor of labor-market earnings (Murnane, Willett, &
Levy, 1995; Ritchie & Bates, 2013). In addition, researchers
consistently find that children’s early mathematics achieve-
ment predicts their later mathematics achievement (e.g.,
Duncan et al., 2007). These findings have led many peo-
ple to conclude that early intervention is likely to result in
significant long-term gains in children’s mathematics
achievement and subsequent life outcomes. Indeed, the
U.S. government spends at least as much on early-child-
hood programs as on educating disadvantaged students
in kindergarten through Grade 12 (Whitehurst, 2014).
The efficiency of these early intervention programs
depends on whether raising children’s school-entry
mathematical skills will better enable them to acquire
more difficult mathematical skills later on. Consistent
with this possibility are findings that in children’s math-
ematical development, later knowledge often builds on

earlier knowledge. For example, to solve a fraction addi-
tion problem, children must be able to accurately multi-
ply and add whole numbers; children who make frequent
errors in whole-number arithmetic make frequent errors
on fraction arithmetic problems (Siegler & Pyke, 2013).
Transfer of learning likely also contributes to longitudinal
stability in children’s mathematics achievement. For
example, knowledge of mathematical concepts facilitates
the learning of mathematical procedures, and vice versa
(Rittle-Johnson & Siegler, 1998; Schneider, Rittle-Johnson,
& Star, 2011).

Indeed, several studies have found that children’s early
mathematics knowledge is a robust predictor of their later

Corresponding Author:

Drew H. Bailey, School of Education, 3200 Education, University of
California, Irvine, Irvine, CA 92697-5500

E-mail: dhbailey@uci.edu

Downloaded from pss.sagepub.com at UNIV CALIFORNIA IRVINE on October 2, 2014


http://pss.sagepub.com/

Bailey et al.

mathematics achievement (Aunola, Leskinen, Lerkkanen,
& Nurmi, 2004; Bailey, Siegler, & Geary, 2014; Duncan
et al., 2007; Geary, Hoard, Nugent, & Bailey, 2013; Jordan,
Kaplan, Ramineni, & Locuniak, 2009; Siegler et al., 2012;
Watts, Duncan, Siegler, & Davis-Kean, in press). This
longitudinal stability holds after adjusting for domain-
general cognitive abilities, such as IQ and working mem-
ory, reading and language skills, and socioeconomic
status (SES). Further, the amount of time between mea-
surements of early and later mathematics achievement is
not clearly related to the strength of the association
between them (Watts et al., in press); in fact, some evi-
dence suggests that the strength of this relation increases
over time (Claessens & Engel, 2013).

To the extent that this observed longitudinal stability
in children’s mathematics achievement predicts the likely
effects of interventions, interventions that lead to short-
term gains in children’s mathematics achievement should
show effects of at least the same magnitude persisting
into the long term. However, studies of the effectiveness
of early educational interventions suggest otherwise.
Research on both general educational interventions (e.g.,
Campbell & Ramey, 1994; Puma, Bell, Cook, & Heid,
2010) and mathematics-specific interventions (Clements,
Sarama, Spitler, Lange, & Wolfe, 2011; Clements, Sarama,
Wolfe, & Spitler, 2013) has revealed that short-term test-
score gains have diminishing effects on children’s math-
ematics achievement across time. A comprehensive
review of early-childhood education programs showed
substantially decreasing effects with increasing time since
the intervention (Leak et al., 2010). Therefore, despite a
substantial literature indicating that individual differences
in mathematics achievement are stable from school entry
to school completion, early interventions targeting chil-
dren’s mathematics achievement show diminishing
returns and do not consistently boost their much later
mathematics outcomes. What can account for this appar-
ent discrepancy?

We hypothesize that individual differences in chil-
dren’s later mathematical knowledge are more likely an
indicator of unmeasured, stable characteristics related to
mathematics learning throughout development (e.g.,
domain-general cognitive abilities, motivation) than of a
direct effect of their early mathematical competency on
their later mathematical competency. This hypothesis is
supported by two findings from studies of children’s
mathematical development.

First, previous research has found a consistent relation
between early and later measurements of mathematics
achievement, regardless of the amount of time between
measurements. If mathematical development is a purely
autoregressive process, in which earlier knowledge alone
directly influences later learning (Fig. 1a), the correlation
between measures of mathematics achievement at

different time points should decay exponentially as the
time between the measures increases and the causal con-
nection between these time points becomes increasingly
indirect. If, at the other extreme, individual differences
arise independently of previous mathematical knowledge
(Fig. 1b), the correlation between mathematics achieve-
ment in one year and mathematics achievement in
another year should be completely independent of the
time gap between those years. The truth probably lies
somewhere in the middle, because it is likely that both
traits (stable characteristics that contribute to achieve-
ment) and previous knowledge contribute to children’s
mathematical development. However, the findings that
the temporal distance between measurements of mathe-
matics achievement is not clearly related to the strength
of the association between those measurements are more
consistent with the latter pattern.

Second, studies have also found relations between
mathematics achievement and a large number of traits,
which are unlikely to be fully controlled in longitudinal
studies of mathematics achievement. A skeptic might
argue that stable underlying traits are not likely to account
for strong longitudinal relations in children’s mathematics
achievement because children’s mathematics achieve-
ment shows rank-order longitudinal stability even after
adjustments are made for IQ, working memory, and SES.
Indeed, it is uncontroversial that these traits affect chil-
dren’s learning. For example, a large prospective study
found that intelligence at age 11 accounted for 59% of the
variance in mathematics achievement at age 16 (Deary,
Strand, Smith, & Fernandes, 2007). However, the large set
of traits that have been implicated in mathematics learn-
ing includes attention (Zentall, 2007), processing speed
(Mazzocco & Grimm, 2013), several subfacets of working
memory (Sziics, Devine, Soltesz, Nobes, & Gabriel, 2014),
beliefs and expectancies (Meece, Wigfield, & Eccles,
1990), and motivation (Murayama, Pekrun, Lichtenfeld, &
vom Hofe, 2013). The length of this list is problematic:
No longitudinal study of children’s mathematics achieve-
ment that we are aware of has assessed all of these traits,
and therefore every such study has been confounded by
unmeasured traits that may affect children’s mathematics
achievement across development. Consequently, reported
findings may overestimate the potential effects of early
interventions on much later mathematics achievement.
The current study was designed to estimate the relative
influences of stable traits and previous state knowledge
(i.e., autoregressive effects) on children’s mathematical
development.

Method

We addressed the problem of confounds by using the
state-trait modeling approach (Steyer, 1987) to analyze
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Fig. 1. Illustration of (a) state-only and (b) trait-only models of mathematics achievement and the correlation matrices
they predict. Each model describes the relationships among latent trait mathematics achievement and measures of state
mathematics achievement (S) at four time points (1-4). Although both models predict correlations of x between mathemat-
ics achievement at consecutive time points, they make differing predictions about the correlations between mathematics
achievement at nonconsecutive time points. According to the purely autoregressive, state model, these correlations will
decay exponentially with increasing distance in time between measurements, whereas according to the pure trait model,
these correlations will be stable regardless of the distance in time between measurements.

two longitudinal data sets. That is, we partitioned the
variance in mathematics achievement throughout devel-
opment into trait effects (i.e., effects of factors that influ-
ence an individual’s mathematics achievement similarly
across development) and state effects (i.e., effects of indi-
vidual differences in mathematics achievement on subse-
quent mathematics achievement). Thus, mathematics
achievement at a given time point was modeled as influ-
enced by (a) a traitlike factor, (b) mathematics achieve-
ment at the immediately preceding measurement
occasion (the state effect), and (¢) unique sources of
variation (e.g., measurement error; Jackson, Sher, &
Wood, 2000). In our models, trait mathematics achieve-
ment was a set of factors that had a stable influence on
mathematics achievement throughout development. State
effects, in contrast, represented occasion-specific effects
on children’s mathematics achievement (e.g., the influ-
ences of specific teachers), effects of specific types of
mathematics knowledge on the development of other
knowledge, and a number of other factors.

We hypothesized that latent trait effects would contrib-
ute significantly to the longitudinal stability in children’s
mathematics achievement. We also hypothesized that
most of the trait variance would be accounted for by

domain-general cognitive abilities, reading achievement,
and SES. However, because these variables do not
account for all traits contributing to children’s mathemat-
ics achievement, we also hypothesized that latent trait
effects would continue to contribute to estimates of lon-
gitudinal relations between early and later mathematics
knowledge even after we adjusted for these other
variables.

Shorit-term data set

The participants in this data set were the 292 children
who completed the first-grade assessments in a longitu-
dinal study of mathematical development (Geary, 2010;
Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007).
Appendix A of the Supplemental Material available online
provides additional information on this sample, including
details about their SES.

Mathematics achievement. Participants’ mathematics
achievement in first, second, third, and fourth grades was
assessed using the number of correct answers on the
Numerical Operations subtest of the Wechsler Individual
Achievement Test II-Abbreviated (Wechsler, 2001). In this
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age range, the items involve number discrimination, rote
counting, number production, basic addition and sub-
traction, and multidigit addition and subtraction; there
are also some multiplication and division problems to be
solved with paper and pencil. This test has been shown
to be reliable in all four of these age groups (split-half
reliabilities, calculated using the Spearman-Brown for-
mula, were .85, .81, .91, and .88 for ages 6, 7, 8, and 9,
respectively; Wechsler, 2001).

Reading achievement. First graders’ reading achieve-
ment was assessed using the number of correct answers
on the Word Reading subtest of the Wechsler Individual
Achievement Test II-Abbreviated (Wechsler, 2001). This
subtest requires reading single words aloud.

Working memory. Central executive functioning in first
grade was assessed by the number of correct answers on
the Listening Recall, Counting Recall, and Backward Digit
Recall subtests of the Working Memory Test Battery for
Children (Pickering & Gathercole, 2001). This measure
was reliable in the current sample (Cronbach’s o = .77).

Intelligence. The Vocabulary and Matrix Reasoning
subtests of the Wechsler Abbreviated Scale of Intelligence
were administered and used to estimate Full Scale IQ in
first grade (Wechsler, 1999).

SES. Data on parental education and household income
were obtained through a survey completed by the par-
ticipants’ parents.

Long-term data set

Data for our long-term models of mathematics achieve-
ment were drawn from the National Institute of Child
Health and Human Development (NICHD) Study of Early
Childcare and Youth Development (SECCYD). Participants
were recruited at birth from 10 geographically diverse
sites in both urban and rural areas and were followed
through adolescence. We employed a subsample (7 =
1,124) of participants who had at least one valid mathe-
matics achievement score. Sampling procedures for the
SECCYD study have been well documented (see Duncan
& Gibson, 2000; NICHD Early Child Care Research
Network, 2002). We present descriptive information
about the participants in Appendix B of the Supplemental
Material.

Mathematics achievement. The Woodcock-Johnson—
Revised (WJ-R) Applied Problems subtest (Woodcock,
McGrew, & Mather, 2001) was administered in Grades 1,
3, and 5 and at age 15. The Applied Problems subtest is
a widely used measure of mathematics achievement (e.g.,

Siegler et al., 2012), and it is used to assess understanding
of a broad range of mathematical procedures and con-
cepts. In the current study, we used the standard score,
which was age-normed to national standards (M = 100,
SD = 15). This test was reliable in all four age groups of
this sample (Cronbach’s a = .83, .81, .82, and .87 for
Grades 1, 3, and 5 and age 15, respectively).

Reading achievement. We used first-grade scores on
the WJ-R Letter Word Identification subtest to measure
early reading achievement. As with mathematics achieve-
ment, we used the standard score, which reflects stu-
dents’ ability to correctly identify letters and simple
words.

Working memory. The WJ-R Memory for Sentences
subtest, which requires repeating sentences and phrases
presented by a tape player, is a commonly used measure
of working memory (e.g., Duncan et al., 2007). We used
nationally normed standardized scores on this subtest for
our measure of working memory.

Executive functioning. During first grade, children
were administered the Tower of Hanoi puzzle, which
assesses problem-solving and planning abilities. We used
the efficacy score, which is derived from the number of
trials the participant takes to complete each task (see
Borys, Spita, & Dorans, 1982).

SES. Family income was measured via parental report
six times from when the children were 1 month old to
when they were in first grade. This information was
transformed to an income-to-needs ratio at each time
point, and we calculated the average ratio for each child.
Mothers reported their level of completed education dur-
ing interviews when the children were 1 month old.

Analyses

For each data set, we estimated a state-trait model with a
latent trait and four state factors; each of the state factors
was related to the corresponding mathematics measure
via a path set to the square root of the reliability for that
measure (to account for measurement error). We also
estimated for each data set a model in which we regressed
the latent trait on domain-general cognitive abilities
(working memory, IQ or executive functioning), reading
achievement (a measure of reading ability and proxy for
general academic ability), and SES (household income,
parental education). Thus, we estimated a total of four
models.

We constrained the trait variance to be 1 and the paths
from latent trait mathematics achievement to state math-
ematics achievement at the second, third, and fourth time
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Table 1. Correlation Matrices for the Short-Term and Long-Term Data Sets

Variable 1 2 3 4 5 6 7 8 9
1. State math achievement: Time 1 72 72 .66 .53 27 .58 .33 .36
2. State math achievement: Time 2 .61 .76 .67 .50 .26 .56 .28 .34
3. State math achievement: Time 3 .49 .69 74 .51 27 52 .33 .39
4. State math achievement: Time 4 .51 .67 72 49 22 44 .32 .40
5. Working memory 41 .53 .58 .59 .19 45 .30 .33
6. IQ/executive functioning® .36 .51 .46 .49 44 .18 .16 .15
7. Reading achievement 44 49 .55 .55 .55 .51 .23 .28
8. Household income 23 .30 .28 .33 22 .37 .36 .55
9. Parental education .20 .29 .37 .39 .38 37 .35 .58

Note: Correlations in the short-term data set are below the diagonal; correlations in the long-term data set are above the diagonal. All correlations

are significant, p < .03 (p < .001 for correlations in boldface).

20ur second measure of domain-general ability was IQ in the short-term data set and executive functioning in the long-term data set.

points to be equivalent within each model. We freely
estimated the path from latent trait mathematics achieve-
ment to state mathematics achievement at the first time
point because it was the only time point that did not
control for previous mathematics achievement. This prac-
tice is common in latent variable analyses (Little, Slegers,
& Card, 2006). In the long-term data set, the latter con-
straint led to inflated standard errors for some of the
paths, so we constrained the first, third, and fourth time
points to be equivalent in each model for this data set.
For the long-term data set, all latent variables and con-
trols were regressed on site before being entered in the
models. This practice is common in analyses using these
data (Duncan et al., 2007; Watts et al., in press), as site
characteristics have been shown to vary widely in this
sample.

Results

Table 1 presents the correlation matrices for the short-
term and long-term data sets. The correlations in both
data sets approximate a pattern predicted by a trait model
more closely than a pattern predicted by a purely autore-
gressive, state model. The average correlations for math-
ematics achievement measured at consecutive time points
were .67 and .74 in the short-term and long-term data
sets, respectively. Given these observations, an autore-
gressive process would predict estimates near .72 (.49)
and 7% (34) for correlations between mathematics
achievement two and three time points apart, respec-
tively. In contrast, a trait model would predict correla-
tions close to .7 regardless of the lag between
measurements. In the short-term data set, the correlations
between mathematics achievement two time points apart
averaged .58, and the correlation between Time 1 and
Time 4 mathematics achievement was .51. In the long-
term data set, the correlations between mathematics

achievement two time points apart averaged .70, and the
correlation between Time 1 and Time 4 mathematics
achievement was .66, despite a lag of approximately 8
years between these time points. These correlations sug-
gest substantial trait effects in both cases, but also pro-
vide some evidence of state effects.

Figure 2 presents the state-trait models for the short-
and long-term data sets before and after regressing the
latent trait on domain-general abilities, reading achieve-
ment, and SES. We evaluated model fit using recommen-
dations from Kline (2005). Specifically, we considered fit
to be good if the comparative fit index (CFI) was at least
90 and the root-mean-square error of approximation
(RMSEA), which measures fit adjusting for sample size,
was less than .08, and preferably less than .05.

State-trait models for the short-term
data set

The state-trait model fit the short-term data well both
before and after we regressed the latent trait on domain-
general abilities, reading achievement, and SES—before:
yA(1) = 0.65, p = .42, RMSEA = .00, CFI = 1.00; after:
yX(6) = 19.89, p = .23; RMSEA = .03; CFI = .995. Before
adjustment for domain-general cognitive abilities, read-
ing achievement, and SES (see Fig. 2, first coefficient for
each path), both state and trait effects were significant in
all cases, but trait effects (range: .64—.74) were larger than
state effects (range: .18-.26). For example, the proportion
of variance in Time 2 mathematics achievement that was
explained by direct trait effects was .55 (trait loading x
trait variance x trait loading, or .74 x 1 x .74). In contrast,
the proportion of variance in Time 2 mathematics
achievement that was explained by Time 1 state mathe-
matics achievement (including the indirect effect of the
latent trait via Time 1 state mathematics achievement)
was .07 (state effect?, or .26%).
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ST: —,.41% ST: —,.23** ST —,.27** ST: —,.06 ST: —,.06
LT: —,.30** LT: —,. 14" LT: —,.40% LT: —,.07* LT: —,. 16
Working IQ/Executive Reading Household Parental
Memory Function Achievement Income Education

Unique Trait Variance
ST:1,.34
LT:1,.45

ST: .64**,.65"*
LT: .85™*,.90"**

ST: .71%,.69"**
LT: .83"*,.86**

ST: .70%,.68***
LT:.85"*,.89"*

ST .74%, 72"
LT: .60***,.85***

P

ST: .26™*,.26™**
LT: .34**,.09

ST: .18%,.20"
LT: .16**,.09*

ST: .20**,.22**
LT: .04,-.01

M1 M2 M3 M4
ST: .92,.92 ST:.90,.90 ST: .95,.95 ST: .94,.94
LT:.91,.91 LT:.90,.90 LT:.91,.91 LT: .93,.93

Fig. 2. State-trait models for the short-term data set (ST) and the long-term data set (LT). For each
data set, the first coefficient is from the model before the latent trait was regressed on domain-general
abilities (working memory in both ST and LT; IQ in ST and executive functioning in LT), reading
achievement, and socioeconomic status (household income and parental education), and the second
coefficient is from the model after the latent trait was regressed on these variables. All coefficients are
standardized. S1, S2, S3, and S4 = state mathematics achievement at the first, second, third, and fourth
time points, respectively; M1, M2, M3, and M4 = measured mathematics achievement at these time
points. Asterisks indicate coefficients that are significant (*¢p < .05, *p < .01, **p < .005). The numbers
at the bottom of the figure are the square roots of test reliabilities of each test at each time point; these
values were used to adjust the state values for measurement error. Correlations between domain-gen-
eral cognitive abilities, reading achievement, and SES are not shown, nor are the effects of site dummy
variables on all manifest and latent variables in the long-term data set.

The ratio of the percentage of variance in Time 2
mathematics achievement accounted for by direct trait
versus state factors (55:7) was striking. However, it is
uncontroversial that traits affect children’s mathematics
achievement. Indeed, this is why researchers often adjust
for some combination of domain-general cognitive abili-
ties, reading achievement, and SES in longitudinal studies
of children’s mathematics achievement. Together, these
variables accounted for 66% of the variance in trait math-
ematics achievement in the short-term data set. A more
interesting question is whether trait effects vanished after
adjustment for these variables? In the model adjusting for
domain-general cognitive abilities, reading achievement,

and SES (see Fig. 2, second coefficient for each path), .07
of the variance in Time 2 mathematics achievement was
again explained by Time 1 mathematics achievement (the
state effect); the direct trait effect was reduced, but at .18
(.72 x .34 x .72) was still more than twice the size of the
state effect.

State-trait models for the long-term
data set
The state-trait model fit the long-term data well both

before and after we regressed the latent trait on domain-
general abilities, reading achievement, and SES—before:
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x*(D) = 4.48, p = .03, RMSEA = .056, CFI = .999; after:
xX(16) = 108.22, p < .001; RMSEA = .072, CFI = .975. As in
the short-term data set, trait effects were substantially
larger than state effects. The final state path was not sta-
tistically significant in either model for the long-term data
set, but we note that the time between the third and
fourth time points, 4 years, was the longest in either data
set.

In the long-term data set, before the adjustments for
domain-general abilities, reading achievement, and SES,
the proportion of variance in Time 2 mathematics
achievement that was explained by direct trait effects was
36 (60 x 1 x .60), and the proportion of variance
accounted for by state effects (including the indirect
effect of the latent trait via Time 1 state mathematics
achievement) was .12 (.34 x .34). Domain-general cogni-
tive abilities, reading achievement, and SES together
accounted for 55% of the variance in trait mathematics
achievement. As in the short-term data set, adjusting for
these variables (see Fig. 2, second coefficient for each
path) reduced the proportion of variance in Time 2 math-
ematics achievement that was directly accounted for by
the latent trait (.85 x .45 x .85, or .33), but this was still
substantially larger than the amount of variance accounted
for by state Time 1 mathematics achievement (.09 x .09,
or .0D).

Discussion

Results were quite similar across the two data sets, and
were consistent with our predictions. Latent trait effects
accounted for most of the longitudinal stability in chil-
dren’s mathematics achievement and were largely
explained by measured domain-general cognitive abili-
ties, reading achievement, and SES (and especially by
working memory and reading achievement—see Fig. 2).
However, as predicted, latent trait effects continued to be
larger than state effects even after adjustment for these
variables. This indicates that failing to consider other sta-
ble characteristics (e.g., motivation and external environ-
mental effects, such as school effects) could substantially
bias estimates produced by multiple regression models.
This study unites two discrepant lines of research: a
large body of work indicating high levels of longitudinal
stability of individual differences in children’s mathemat-
ics achievement and studies showing diminishing effects
of early mathematics interventions over time. The latter
studies fail to adequately adjust for trait effects on math-
ematics achievement, and reported results consequently
overestimate the likely effects of early interventions on
much-later mathematics achievement outcomes. It is pos-
sible that trait mathematics achievement includes some
early mathematical skills or skills, such as basic arithmetic

skill, that contribute to performance on a wide range of
mathematics tests, but this remains to be determined.

On the one hand, individual differences on some mea-
sures of basic arithmetic achievement (e.g., retrieval
accuracy for simple arithmetic facts) tend to converge
(Ackerman, 2007; but do not disappear, as we discuss in
the next paragraph) and show weaker relations with rela-
tively stable traits (e.g., domain-general cognitive abili-
ties) as children progress in their mathematical
development (Bailey, Littlefield, & Geary, 2012). These
findings are inconsistent with the argument that trait
mathematics achievement includes these basic mathe-
matics skills. Further, it is unlikely that any particular set
of factual knowledge can account for much of the trait
variance we observed in children’s mathematics achieve-
ment. This is because of the heterogeneity in the mathe-
matical knowledge underlying variance in mathematics
achievement from Grade 1 (the first time point in the
long-term data set) to age 15 (the fourth time point in the
long-term data set). For example, the 95th percentile of
mathematics achievement at the first-grade time point
corresponded to a raw score of 32, whereas a raw score
of 33 on the same test corresponded to the 5th percentile
of mathematics achievement at age 15. Therefore, the
sets of problems on which children vary most are prob-
ably almost completely distinct at these two times.

On the other hand, individual differences in some
basic skills (e.g., speed and accuracy of fact retrieval)
persist even into adulthood (e.g., Geary & Widaman,
1992) and likely contribute to individual differences in
performance in more complex mathematical domains.
These observations are consistent with the argument that
these basic skills may be included in the construct of trait
mathematics achievement. However, a different pattern is
found with general mathematics achievement, a more
complex domain in which individual differences grow
during development (Ackerman, 2007; Aunola et al.,
2004; Geary et al., 2009) and remain substantially related
to trait-level cognitive abilities (Table 1; Deary et al.,
2007). The amount of observed variance in mathematics
achievement accounted for by latent trait effects in our
models is consistent with previous estimates of the effects
of these cognitive abilities on mathematics achievement
(Cowan & Powell, 2013; Deary et al., 2007), and the state-
trait model fit both data sets well despite the constraint
that trait loadings were constrained to be equivalent for
three of the four time points. Therefore, if trait mathemat-
ics achievement includes specific types of mathematical
skills, individual differences in mathematical knowledge
would have to affect mathematics achievement similarly
throughout development. Whether this is the case, and if
so, what basic mathematics skills have these effects
remain to be determined.
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Implications for research

Findings from many longitudinal studies of children’s
mathematics achievement can be reinterpreted in light of
these findings. Latent trait effects are likely confounds in
studies of longitudinal stability in children’s mathematics
achievement and in studies of the numerical, mathemati-
cal, and domain-general skills that predict changes in
children’s mathematics achievement over time. Even
studies that control for previous mathematics achieve-
ment (i.e., using an autoregressor) do not fully control for
the traits that consistently affect children’s mathematics
achievement across development. However, interpreta-
tions of descriptive studies of the cognitive profiles of
children with high and low mathematics achievement, or
children at risk for low achievement, are not changed by
the current study, and such studies remain useful for
identifying children at risk for persistently low mathemat-
ics achievement.

The current study raises an important question: What
traits account for the remaining variance in trait mathe-
matics achievement? If it is possible to account for a very
high proportion of the variance in trait mathematics
achievement with a set of control variables, future longi-
tudinal studies that include these variables can avoid
confounds. Regardless, a simpler solution may be to
include mathematics achievement data at enough time
points to enable a state-trait analysis. The state-trait
approach has a further advantage in that it can be used
in currently existing longitudinal data sets to test hypoth-
eses previously tested using the more traditional multiple
regression approach. In addition to replicating the cur-
rent findings, future research can address new questions
raised by the state-trait framework, including whether
early interventions affect state or trait mathematics
achievement, whether state or trait mathematics achieve-
ment affects important life outcomes, and whether differ-
ent types of key mathematical knowledge are related to
mathematics achievement at the state or trait level. A final
option for testing the direct effects of early mathematics
knowledge on later mathematics achievement is the ran-
domized controlled-trial design, which remains the gold
standard for testing causal hypotheses.

Implications for practice

A practical implication of the current study is that early
interventions that narrowly target skill acquisition for
children with significant early mathematical deficits are
likely insufficient to substantially alter their long-run
achievement trajectories. That said, we believe these
interventions are important and necessary. Several early
interventions are known to quickly and effectively boost
children’s early numerical knowledge (e.g., Siegler, 2009),
and a more intensive early mathematics intervention has

shown benefits remaining at impressive levels 3 years
later (Clements et al., 2011; Clements et al.,, 2013).
Moreover, the alternatives to early intervention are not
clearly more desirable. The state-trait model predicts that
later mathematics intervention will produce larger end-
of-schooling gains in mathematics achievement for every
standard-deviation gain in mathematics achievement that
is immediately produced by the intervention. However,
raising later mathematics achievement by 1 standard
deviation is likely much more difficult than boosting ear-
lier mathematics achievement by 1 standard deviation, as
children are asked to master an increasingly large and
complex set of knowledge as they get older.

Further, it is unclear at this point whether interven-
tions also affect latent trait mathematics achievement. If
so, the state-trait approach indicates the need to simulta-
neously target competencies that contribute to trait math-
ematics achievement above and beyond IQ, working
memory, and the SES measures used here. For example,
if the variance in trait mathematics achievement is related
in part to motivation, perhaps promoting early numerical
competence and motivation would increase trait mathe-
matics achievement and later mathematical achievement
on top of boosting state mathematics achievement.
Consistent with this possibility is the finding that a
successful early intervention with long-term effects on
mathematics achievement also increased students’” moti-
vation (Schweinhart et al., 2005). Interventions that
change beliefs about the importance of effort for mathe-
matics learning may also contribute to trait effects and
boost long-term mathematics achievement (Blackwell,
Trzesniewski, & Dweck, 2007). In other words, our results
point to the need for multifaceted interventions that
improve facets of trait mathematics achievement that can
be most efficiently manipulated (perhaps motivational
factors and beliefs), as well as successive interventions
that target specific deficits in content knowledge through-
out children’s mathematical development. Finally, the
current study addressed only individual differences in
children’s mathematical development. We emphasize that
it is important to raise the mean level mathematics per-
formance throughout development for all children.
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